M-math 2nd year Mid Semester Exam Subject: Probability Theory

Time: 3.00 hours Max.Marks 50.

1. Let $\{X_n; n \geq 0\}$ be the simple symmetric random walk on \mathbb{Z} starting at zero. For $x \in \mathbb{Z}$, let $\tau_x := \inf\{n : X_n = x\}$. For a < 0 < b, show that

$$P\{\tau_a < \tau_b\} = \frac{b}{b-a}.\tag{10}$$

2. Let $\{X_n; n \geq 0\}$ be a square integrable martingale in its natural filtration, with square variation process $\{< X>_n; n \geq 0\}$. Let τ be a finite stopping time (in the natural filtration of X) such that $E < X>_{\tau} < \infty$. Show that

$$E(X_{\tau} - X_0)^2 = \dot{E} < X >_{\tau} \text{ and } EX_{\tau} = EX_0.$$
 (15)

3.Let $f:[0,1)\to\mathbb{R}$ be an integrable function with respect to Lebesgue measure λ . Let $I_{n,k}:=[k2^{-n},(k+1)2^{-n})$ for $n\in\mathbb{N}$ and $k=0,1,\cdots,2^n-1$. Define $f_n:[0,1)\to\mathbb{R}$ as follows: if $x\in I_{k,n}$,

$$f_n(x) := 2^n \int_{I_{k,n}} f \ d\lambda.$$

Show that $\{f_n; n \geq 1\}$ is a uniformly integrable martingale in an appropriate filtration and deduce that $f_n(x) \to f(x)$ for λ almost all $x \in [0, 1)$. (15)

- 4. Let $\{X_i; i \geq 0\}$ be a sequence of i.i.d random variables and let N be a Poisson r.v. independent of $\{X_i; i \geq 0\}$. Let $Y := X_0 + X_1 + \cdots + X_N$. Show that Y is an infinitely divisible random variable. (10)
- 5. Let Y be a Binomial random variable with parameters $n \ge 1$ and p. 0 . Is Y infinitely divisible? Justify your answer. (10)
- 6. Let $0 < \alpha < 2$, and define a measure ν_{α} on \mathbb{R} by $\nu_{\alpha}(dx) := \theta_{\alpha}^{-1}|x|^{-\alpha-1}dx$, where θ_{α} is a positive constant. Show that ν_{α} is a canonical measure and

hence that there exists an infinitely divisible probability measure μ_{α} on \mathbb{R} with the canonical triple $(0,0,\nu_{\alpha})$. Show that for a suitable choice of θ_{α} , $\psi_{\alpha}(t)$, the logarithm of the characteristic function of μ_{α} is given as $\psi_{\alpha}(t) = -|t|^{\alpha}$. (10)